SYS 201	Competency	Yes	No	Work Description/Justification
1	Diagram the current systems acquisition life cycle phases and major activities to be accomplished in each phase and relate the impacts of the on-going acquisition reform initiatives			Description/sustineation
2	to the current life cycle. Apply the principles of Integrated Product and Process Development (IPPD) via the use of the Systems Engineering Process and Integrated Product Teams (IPTs).			
3	Classify Systems Engineering and/or Systems Engineering Process in terms of when it is applied, who applies it, and the results of each Systems Engineering Process application.			
4	Given appropriate references, relate the principles of ethical conduct to a scenario.			
5	Given varying Systems Engineering issues, determine the methodologies involved in the insertion of technology.			
6	Given appropriate references, relate the role of technical planning in the Systems Engineering effort and its relationship to overall program planning.			

SYS	Competency	Yes	No	Work
201				Description/Justification
7	Given relevant references and a			
	scenario, correctly apply the			
	Requirements Analysis step to			
	formulate the functional, physical, and			
	operational requirements viewpoints			
	within the Systems Engineering			
	Process.			
8	Given relevant references and a			
	scenario, correctly apply the			
	Functional Analysis and Allocation			
	step to formulate the functional			
	architecture within the Systems			
	Engineering Process.			
9	Given relevant references and a			
	scenario, correctly apply the Synthesis			
	step to formulate the physical			
	architecture within the Systems			
	Engineering Process.			
10	Given relevant references, correctly			
	apply the verification loop in the			
	Systems Engineering Process.			
11	Given appropriate documentation,			
	correctly determine the Systems			
	Engineering Process outputs.			
12	Using a scenario, develop a Work			
	Breakdown Structure (WBS) based			
	on the previously developed physical			
	architecture.			

SYS	Competency	Yes	No	Work
201				Description/Justification
13	Given a Statement of Work (SOW),			
	critique its preparation, structure, and			
	content.			
14	Relate the implementation of cost			
	containment in an acquisition program			
	to the Cost As an Independent			
	Variable (CAIV) philosophy.			
15	Given a set of conflicting system			
	requirements, propose a trade study			
	methodology, conduct an analysis, and			
	provide rationale.			
16	Given a scenario, relate the role and			
	interrelationships of Configuration			
	Management, Interface Management,			
	and Data Management to the Systems			
	Engineering Process.			
17	Given a scenario, apply the DoD			
	acquisition risk management process			
	within an Integrated Product/Process			
	Development/ Integrated Product			
	Team environment.			
18	Identify Measures of Effectiveness			
	(MOEs)/Measures of Performance			
	(MOPs), and select the critical MOPs			
	from a given system description of			
	requirements as Technical			
	Performance Measures (TPMs).			

SYS	Competency	Yes	No	Work
201				Description/Justification
19	Given a list of probable event criteria,			
	select the most important events,			
	develop a checklist, and determine			
	how each event will be verified to			
	assist in planning and executing a			
	specific technical review.			
20	Given a scenario, analyze problems			
	associated with a product			
	improvement, recommend steps to			
	avoid problems, and provide feasible			
	solutions.			
21	Given examples, analyze how planning			
	for Environmental, Safety, and Health			
	(ESH) requirements (major statutory/			
	regulatory provisions) influences			
	system designs within the Systems			
	Engineering Process.			